Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Possible pathway of zeolite formation through alkali activation chemistry of metakaolin for geopolymer-zeolite composite materials; ATR-FTIR study

Onutai, S.; Sato, Junya; Osugi, Takeshi

Journal of Solid State Chemistry, 319, p.123808_1 - 123808_10, 2023/03

 Times Cited Count:4 Percentile:84.39(Chemistry, Inorganic & Nuclear)

Journal Articles

Alumino-silicate structural formation during alkali-activation of metakaolin; In-situ and ex-situ ATR-FTIR studies

Onutai, S.; Osugi, Takeshi; Sone, Tomoyuki

Materials, 16(3), p.985_1 - 985_14, 2023/02

 Times Cited Count:4 Percentile:87.83(Chemistry, Physical)

Journal Articles

Synthesis of a Si-Al gel as a starting material of aluminosilicate solids

Sato, Junya; Shiota, Kenji*; Takaoka, Masaki*

Zairyo, 70(5), p.406 - 411, 2021/05

An aluminosilicate solid is an inorganic material that has the property of immobilizing heavy metals or radionuclides in the matrix. In this study, aluminosilicates with a Si/Al molar ratio of 0.5 was synthesized from a chemical reagent in order to produce aluminosilicate solids with a low Si/Al molar ratio, which were expected to improve the immobilization of heavy metals and radionuclides contained in the matrix. The synthesized Si-Al gel with a Si/Al molar ratio of 0.5 had little impurity content and was in an amorphous phase. In addition, the compressive strength of the aluminosilicate solid produced by the synthesized Si-Al gel showed a 5 MPa or more, confirming that it can be used as a raw material for aluminosilicate solids. The aluminosilicate solid with a Si/Al molar ratio of 1.25 had a dense surface structure from the result of BSE images and had the highest compressive strength among all samples.

JAEA Reports

Geopolymers and their potential applications in the nuclear waste management field; A Bibliographical study

Cantarel, V.; Motooka, Takafumi; Yamagishi, Isao

JAEA-Review 2017-014, 36 Pages, 2017/06

JAEA-Review-2017-014.pdf:3.37MB

After a necessary decay time, the zeolites used for the water decontamination will eventually be conditioned for their long-term storage. Geopolymer is considered as a potential matrix to manage radioactive cesium and strontium containing waste. For such applications, a correct comprehension of the binder structure, its macroscopic properties, its interactions with the waste and the physico-chemical phenomena occurring in the waste form is needed to be able to judge of the soundness and viability of the material. Although the geopolymer is a young binder, a lot of research has been carried out over the last fifty years and our understanding of this matrix and its potential applications is progressing fast. This review aims at gathering the actual knowledge on geopolymer studies about geopolymer composites, geopolymer as a confinement matrix for nuclear wastes and geopolymer under irradiation. This information will finally provide guidance for the future studies and experiments.

4 (Records 1-4 displayed on this page)
  • 1